Plasmonic Nanomaterials
In this research thrust, we aim to design, synthesize and assemble plasmonic nanostructures to manipulate light-matter interactions. Plasmonic nanostructures and their controlled assemblies will be harnessed for sensing applications and for understanding biotic-abiotic interactions at molecular, cellular and system levels. For example, biomolecules can be harnessed to grow densely packed satellite nanoparticles on a plasmonic core to form a novel class of ultrabright surface enhanced Raman scattering (SERS) probes with built-in and accessible electromagnetic hotspots. These functional probes can reveal the transport of nanomaterials inside live cells after their internalization.
Representative papers:
Li, Y.; Guo, H.; Yin, Z.; Lyle, K.; Tian, L. Metal-organic frameworks for preserving functionality of plasmonic nanosensors, ACS Appl. Mater. Interface, DOI:10.1021/acsami.0c20390, 2021, 13, 5564.
Yin, Z., Guo, H. , Li Y. , Chiu J., Tian, L. Ultrastable plasmonic bioink for printable point-of-care biosensors. ACS Appl. Mater. Interfaces. DOI: 10.1021/acsami.0c11799. 2020.12, 35977.
Chemical and Biological Sensors
In this research thrust, we aim to design chemical and biological sensors with high sensitivity, specificity and stability. These biosensors are tailored for point-of-care and resource limited settings. For example, artificial biorecognition elements synthesized with molecular imprinting method offer remarkable thermal, chemical and environmental stability. We also explore novel functional composites comprised of rationally-designed micro/nanostructures, such as three-dimensional plasmonic biofoams for advanced chemical sensors.
Representative papers:
Mogera, U.†; Guo, H.†; Namkoong, M.; Rahman, M. S.; Nguyen, T.; Tian, L. Wearable Plasmonic Paper-based Microfluidics for Continuous Sweat Analysis, Science Advances, 2022, 8, eabn1736.
Guo, H.; Yin, Z.; Namkoong, M.; Li, Y.; Nguyen, T.; Salcedo, E.; Arizpe, I.; Tian, L. Printed Ultrastable Bioplasmonic Microarrays for Point-of-Need Biosensing, ACS Appl. Mater. Interfaces., 2022, 14, 10729.
Tian, L.; Luan, J.; Liu, K.; Jiang, Q.; Tadepalli, S.; Gupta, K. M.; Naik, R. R.; Singamaneni, S. Plasmonic Biofoam: A Versatile Optically Active Material. Nano Lett., 2016, 16, 609–616
Soft, Wearable and Implantable Electronics
In this research thrust, we aim to design, fabricate and validate flexible wearable and implantable electronic interfaces that can continuously measure health related biophysical and biochemical information. These soft seamless interfaces can also stimulate physiological processes for therapeutics and provide feedback to human-machine interface. For example, soft and stretchable thermal sensors, based on three omega (i.e. 3ω) method, can accurately measure thermal conductivity and diffusivity of complex materials systems, such as the human skin, which is challenging using conventional techniques.
Representative papers:
Zavareh, A.; Tran, B.; Orred, C.; Rhodes, S.; Rahman, Md S.; Namkoong, M.; Lee, R.; Carlisle, C.; Rosas, M.; Pavlov, A.; Chen, I.; Schilling, G.; Smith, M.; Masood, F.; Hanks J.; Tian, L. Soft Wearable Thermal Devices Integrated with Machine Learning, Advanced Materials Technologies, 2023, 2300206.
Namkoong, M.; Baskar, B.; Singh, L.; McMurray, J.; Guo, H.; Branan, K.; Rahman, Md. S.; Hsiao, C.; Kuriakose, J.; Hernandez, J.; Arikan, A. A.; Garza-Rivera, L. E.; Coté, G. L.; Tian, L. Add-on soft electronic interfaces for continuous cuffless blood pressure monitoring, Advanced Materials Technologies, Invited Rising Stars, 2023, 2300158.
Namkoong, M.; Guo, H.; Rahman, M. S.; Wang, D.; Pfeil, C. J.; Hager, S.; Tian, L. Moldable and Transferrable Conductive Nanocomposites for Epidermal Electronics, npj Flexible Electronics, 2022, 6, 41.
Tian, L.;† Zimmerman, B.;† Akhtar, A.;† Yu, K. J.;† Moore, M.; Larson, R.; Lee, J. W.; Li, J.; Liu, Y.; Metzger, B.; Qu, S.; Guo, X.; Wu, J.; Mattewson, K. E.; Cornman, J. M.; Fatina, M.; Ma, S.; Wu, T.; Zhang, J.; Zhang, Y.; Dolcos, F.; Fabiani, M.; Gratton, G.; Hargrove, L.; Braun, P.; Huang, Y.; Rogers, J. A. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring, Nature Biomedical Engineering, 2019, 3, 194.