• Skip to primary navigation
  • Skip to main content
  • Overview
  • Research
  • Publications
  • People
  • News
  • Contact

Welcome to the Tian Lab @ TAMU

Texas A&M University College of Engineering

Research

Plasmonic Nanomaterials

In this research thrust, we aim to design, synthesize and assemble plasmonic nanostructures to manipulate light-matter interactions. Plasmonic nanostructures and their controlled assemblies will be harnessed for sensing applications and for understanding biotic-abiotic interactions at molecular, cellular and system levels. For example, biomolecules can be harnessed to grow densely packed satellite nanoparticles on a plasmonic core to form a novel class of ultrabright surface enhanced Raman scattering (SERS) probes with built-in and accessible electromagnetic hotspots.  These functional probes can reveal the transport of nanomaterials inside live cells after their internalization.

Representative papers:

Tian, L.; Tadepalli, S.; Fei, M.; Morrissey, J.; Kharasch, E. D.; Singamaneni, S. Off-Resonant Gold Superstructures as Ultrabright Minimally Invasive Surface-Enhanced Raman Scattering (SERS) Probes. Chem. Mater., 2015, 27, 5678–5684

Tian, L.; Fei, M.; Tadepalli, S.; Morrissey, J.; Kharasch, E. D.; Singamaneni, S. Bio-enabled Gold Superstructures with Built-in and Accessible Electromagnetic Hotspots. Adv. Healthcare Mater, 2015, 4, 1502-1509

Tian, L.; Gandra, N.; Singamaneni, S. Monitoring Controlled Release of Payload from Gold Nanocages using Surface Enhanced Raman Scattering. ACS Nano, 2013, 7, 4252–4260.

Gandra, N.; Abbas, A.; Tian, L.; Singamaneni, S. Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures. Nano Lett., 2012, 12, 2645–2651.

 

Chemical and Biological Sensors

In this research thrust, we aim to design chemical and biological sensors with high sensitivity, specificity and stability. These biosensors are tailored for point-of-care and resource limited settings. For example, artificial biorecognition elements synthesized with molecular imprinting method offer remarkable thermal, chemical and environmental stability. We also explore novel functional composites comprised of rationally-designed micro/nanostructures, such as three-dimensional plasmonic biofoams for advanced chemical sensors.

Representative papers:

Tian, L.; Luan, J.; Liu, K.; Jiang, Q.; Tadepalli, S.; Gupta, K. M.; Naik, R. R.; Singamaneni, S. Plasmonic Biofoam: A Versatile Optically Active Material. Nano Lett., 2016, 16, 609–616

Tian, L.; Liu, K.; Morrissey, J. J.; Gandra, N.; Kharasch, E. D.; Singamaneni, S. Gold Nanocages with Built-in Artificial Antibodies for Kidney Injury Detection. J. Mater. Chem. B, 2014, 2, 167-170.

Tian, L.; Morrissey, J. J.; Kattumenu, R.; Gandra, N.; Kharasch, E. D.; Singamaneni, S. Bioplasmonic Paper as a Platform for Detection of Kidney Cancer Biomarkers. Anal. Chem. 2012, 84, 9928.

Tian, L.; Chen, E.; Gandra, N.; Abbas, A.; Singamaneni, S. Gold Nanorods as Plasmonic Nanotransducers: Distance-dependent Refractive Index Sensitivity. Langmuir, 2012, 28, 17435.

 

Soft, Wearable and Implantable Electronics

In this research thrust, we aim to design, fabricate and validate flexible wearable and implantable electronic interfaces that can continuously measure health related biophysical and biochemical information.  These soft seamless interfaces can also stimulate physiological processes for therapeutics and provide feedback to human-machine interface. For example, soft and stretchable thermal sensors, based on three omega (i.e. 3ω) method, can accurately measure thermal conductivity and diffusivity of complex materials systems, such as the human skin, which is challenging using conventional techniques.

Representative papers:

Tian, L.;† Zimmerman, B.;† Akhtar, A.;† Yu, K. J.;† Moore, M.; Larson, R.; Lee, J. W.; Li, J.; Liu, Y.; Metzger, B.; Qu, S.; Guo, X.; Wu, J.; Mattewson, K. E.; Cornman, J. M.; Fatina, M.; Ma, S.; Wu, T.; Zhang, J.; Zhang, Y.; Dolcos, F.; Fabiani, M.; Gratton, G.; Hargrove, L.; Braun, P.; Huang, Y.; Rogers, J. A. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring, Nature Biomedical Engineering, 2019, 3, 194.

Shin, J.; Yan, Y., Bai; W., Xue, Y.; Gamble, P.; Tian, L.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y.; Choi, M.; Ko, J., Ryu; H., Pezhouh; M., Kang; S., Won; S. M.; Yu, K. J.; Zhao, J.; Lee, Y. K.; MacEwan, M. R.; Song, S.; Huang, Y.; Ray, W. Z.; John A. Rogers. Bioresorbable Pressure Sensors with Thermally Grown Silicon Dioxide Biofluid Barriers for Monitoring of Chronic Diseases and Healing Processes, Nature Biomedical Engineering, 2018, accepted.

Yu, X.; Wang, H.; Ning, X.; Sun, R.; Salomao, M.; Albadawi, H.; S., A. C.; Yu, Y.; Tian, L.; Koh, A.; Lee, C. M.; Chempakasseril, A.; Tian, P.; Pharr, M.; Yuan, J.; Huang, Y.; Oklu, R.; Rogers, J. A. Thin, Needle-Based Piezoelectric Systems for Guided Tissue Targeting by Mechanical Sensing, Nature Biomedical Engineering, 2018, 2, 165.

Tian, L.;† Li, Y.;† Webb, R.C.;† Krishnan, S.; Bian, Z.; Ning, X.; Kurniawan, J.; Liu, Y.; Xie, X.; Liu, Y.; Shi, Z.; Wu, T.; Ning, R.; Li, D.; Cahill, D. G.; Huang, Y.; Rogers, J. A. Flexible and Stretchable 3ω Sensors for Thermal Characterization of Human Skin, Adv. Funct. Mater., 2017, 27, 1701282.

© 2016–2023 Welcome to the Tian Lab @ TAMU Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment